Intune, Azure AD, and Zscaler Private Access

Securing the perimeter has become increasingly difficult with more and more services moving to the cloud and users needing, no, expecting, access from their personal devices. The days of relying on the walls of a network to “trust” access are fading fast, and some would say they’re long gone. This is why organizations are using Microsoft technologies to build out zero trust networks where they rely on device and user claims to evaluate access to resource both on and off network. As I’ve written about in the past, security comes in layers, and zero trust encompasses many layers of security behind the scenes.

Over the past few years, Microsoft has worked with many security and management vendors to integrate with Microsoft Intune and other solutions in EMS such as Azure Active Directory.

The following list is just an example of the many technology partnerships Microsoft has in place today.

To keep up to date with Microsoft security partners please visit: https://www.microsoft.com/en-us/enterprise-mobility-security/microsoft-intune?rtc=1

For this month’s post I’ll focus on Intune, Azure Active Directory, as well as a Microsoft security partner, Zscaler, particularly Zscaler Private Access and its integration with Azure AD and Intune.

What is Zscaler Private Access?

According to Christopher Hines, Head of Product Marketing at Zscaler:

“The Zscaler Private Access (ZPA) service provides users with seamless and secure access to private applications without placing them on the network and without exposing apps to the internet. Allowing enterprises to embrace a software-defined perimeter that supports all private apps and environments.”

More details about Zscaler may be found by visiting: : https://help.zscaler.com/zpa/getting-started/what-zscaler-private-access

Before we get started, I want to give special thanks to the following individuals I collaborated with for this post:

    • Tyler Castaldo – Microsoft Program Manager – Intune
    • David Creedy – Senior Product Manager – Web Security
    • Christopher Hines – Head of Product Marketing – ZPA and Zscaler App

Let’s get started

Zscaler SSO Setup

First, we need to set up Zscaler with Azure so we can provide SSO as users access the app. Once the user accesses the the Zscaler App on their device, they’ll be passed through to Azure AD for sign-on.

Setting up Zscaler Private Access (ZPA) requires a few steps so I won’t go through them, however the steps are well documented here: https://docs.microsoft.com/en-us/azure/active-directory/saas-apps/zscalerprivateaccess-tutorial

In addition, Zscaler has also created their own documentation that may be referenced as well:

Adding Zscaler App to Intune for deployment

For this post I focus on iOS and Android. However, Zscaler is also supported on macOS and Windows 10 (more details at the bottom of this post).

After SSO is set up with Zscaler and Azure AD, we now need to add the Zscaler App to Intune for deployment.

Navigate to portal.azure.com or devicemanagement.microsoft.com and select “Client apps -> Apps”

Select “Add” then App Type and from the dropdown select iOS. Search for Zscaler and select “Zscaler App” as shown below. Add the app and assign it to a group for deployment.

For Android, repeat the steps above, however for the “App type” select “Android“. Use Managed Google Play in the console to search for Zscaler, then add and assign the app to a group for deployment.

Note: if you haven’t set up Managed Google Play with Intune yet, you will find details steps on how to do so by visiting: https://docs.microsoft.com/en-us/intune/connect-intune-android-enterprise

When performing a search for “Zscaler” under apps in Intune you should see both assigned apps.

Configuring the Zscaler App using a VPN policy for iOS and app config for Android

Configuring Zscaler Private Access for iOS in Intune is straightforward as Intune has the settings available directly in the Intune adming portal UI as shown below.

Note: the “Organization’s cloud name” is case sensitive and FQDN and key/value pairs are optional, for more details please visit: https://docs.microsoft.com/en-us/intune/vpn-settings-ios#base-vpn-settings.

Select how the VPN will be launched:

Configure additional settings your organization requires to provide access to applications bridged by Zscaler:

For Android, we need to create an app configuration policy and assign it to the Zscaler App we added earlier.

https://docs.microsoft.com/en-us/intune/app-configuration-policies-use-android

Create an app configuration policy by navigating to “Client apps -> App configuration policies”

Select “Add”, provide the policy a name and from the “Device enrollment type” drop-down select “Android”.

Under “Associated app” select the Zscaler App added earlier.

Under “Configuration settings” select “Use configuration designer” from the drop-down and select all the options provided. Select ok to begin configuring the values.

Configure the values based on how your Zscaler environment is configured. In my case, my Zscaler environment is set up in Azure so I utilized the cloud name for the service in Azure as well as the domain my users log into. For username, I selected variable and chose “Partial UPN”.

Once all the settings are configured select “Ok” to complete the setup.

Note: you’ll notice the “deviceToken” value is set to “DummyValue”. This value isn’t needed when Azure AD is used as the identity provider (IdP), however it is needed in the profile, so just add it and type in whatever you like for the value. Also, please note the “Organization’s cloud name” is case sensitive.

After you’re finished with the app config policy, be sure to assign it to the same group you assigned the Zscaler App to.

Client experience

On first launch, the Zscaler App on iOS and/or Android it will redirect to sign-on using Azure AD, however subsequent launches of the Zscaler App will sign-in automatically.

Azure AD Conditional Access

To prevent access to an application Zscaler Private Access is securing access for, we need to create an Azure AD conditional access policy. The Azure AD Conditional Access policy will ensure the device and/or user meets compliance policies (e.g. Intune) before allowing access.

Navigate the Azure Active Directory in the Azure portal and select “Conditional Access”

Provide a name for the policy and under Cloud app add “Zscaler Private Access” and add the Zscaler cloud app used to access resources, i.e. the organization cloud name that points to the app we added earlier. The cloud app I utilize is called Zscaler ZSCloud as shown below.

Select the device platforms to target the Azure AD CA policy, since I’m focusing on iOS and Android in this post, I select iOS and Android from the devices platforms list.

Now grant access if the device is marked as compliant by Intune, enable the policy and save.

Note: additional conditions and access controls may be checked if needed.

If the device is compliant with Intune compliance policies, Zscaler will connect the user to the application. If the device isn’t compliant, Azure AD Conditional Access will block access to the application Zscaler provides access until the compliance issue is remediated.

Let’s see this in action

I’m testing with my Android device enrolled with Intune under Android Enterprise Device Owner as a fully managed device. The Zscaler Private Access (ZPA) App and ZPA App configuration is automatically deployed.

Intune_Zscaler.gif

Conclusion

In summary we learned how to set up Zscaler with Azure and provide SSO using Azure Active Directory. We also learned how to set up Zscaler Private Access App configuration and app deployment with Microsoft Intune. Finally, we learned how to set up an Azure Active Directory Conditional Access policy to further secure application access with Zscaler based on Intune device compliance.

I hope this post helps you and your organization further secure corporate applications, devices, users, and resources using Microsoft Intune, Azure Active Directory, and Zscaler Private Access. If you’re a Zscaler customer today, go out and give these steps a try.

Appendix

Information on setting up Zscaler for Windows and MacOS

Outlook app configuration – contact field export control

Organizations utilizing the Outlook app on iOS and Android may desire granular control of app behavior such as only allowing certain contact fields to be sync’d with the native contacts app on iOS. Fortunately, Outlook settings are available to further control the Outlook app on iOS and Android.

I’ve worked with organizations who have strict data protection and GDPR requirements and utilizing Intune we were able to protect data from leaking from users’ corporate email to unmanaged apps and storage while allowing limited contact attributes sync’d to the local contacts app so caller ID will show for callers residing in contacts. Some of the restrictions are enforced by the platform (i.e. iOS/Android) while other restrictions are controlled at the app and device layer by Intune.

To learn more about app config with Outlook please visit: https://docs.microsoft.com/en-us/exchange/clients-and-mobile-in-exchange-online/outlook-for-ios-and-android/outlook-for-ios-and-android-configuration-with-microsoft-intune#configure-contact-field-sync-to-native-contacts-for-outlook-for-ios-and-android

As you walk through the settings make note of the “Device Enrollment Type” for each configuration setting, e.g. “Managed devices”, “Managed apps”. The device enrollment type corresponds to the Intune “Device enrollment type” setting when adding a configuration policy (see screenshot below). It’s important to understand the differences as there are different settings for different types of profiles and if settings are used for an unsupported profile type, they simply will not deploy to the app. In addition to the contacts settings, there are also account configuration, wearable, and iOS notification settings that can be configured as well.

Let get started

The following example demonstrates syncing only certain contact fields to the local contacts app so the end user will see the caller ID for a contacts for phone numbers when calls are received.

Navigate to the Intune admin portal and select “Client Apps > App configuration policies > Add”

Give the configuration policy a name and select “Managed apps” as the Device enrollment type as I’m pushing this policy via an App Protection Policy.

Select “Associated app” and select Outlook for the platform(s) you’re interested in configuring Outlook for. For “Managed Apps” I recommend using a single policy for iOS and Android to maintain consistency across platforms.

Add configuration settings to configure the app configuration settings for contacts in Outlook as shown below. These are key/value pairs and are documented here: https://docs.microsoft.com/en-us/exchange/clients-and-mobile-in-exchange-online/outlook-for-ios-and-android/outlook-for-ios-and-android-configuration-with-microsoft-intune#configure-contact-field-sync-to-native-contacts-for-outlook-for-ios-and-android

I’m only allowing first name, last name, and mobile phone number. If other phone fields are required such as home, office, other, you may want to allow those as well. Note: these fields match up to the existing fields in Outlook contacts and the native contacts app.

Assign the policy to a group of users:

Syncing contacts to the native contacts app

For contacts to show up in the native contacts app, users need to manually select “Save Contacts” in Outlook settings to sync contacts to their device.

Note: if you don’t see “Save Contacts” an Intune App Protection Policy may be blocking contacts sync. To check APP settings install and open the Edge browser and type in: about:intunehelp in the search box and view Intune app status for Outlook. If block contact sync is enabled, it will be set to “1” disabled will be set to “0”. Also, the “Save Contacts” setting cannot be set by policy at this time.

As shown below, only the fields specified in the Outlook configuration policy show up when the contact is accessed from the native contacts app. All other fields are blanked out. Even if I add the additional data to the fields, such as a phone number, the field will show up populated in the native contacts app then disappear when the policy refreshes (the update to the field will retain in Outlook though).

If you continue to see the fields that are blocked, try waiting a few minutes and disabling and re-enabling contact sync in Outlook.

Finally, when the email profile is removed from Outlook so are the sync’d contacts from the native contacts app.

Additional info

For MDM enrolled iOS devices, if contacts do not sync with the native contacts app after going through the steps above, because of certain Apple restrictions, you may need to toggle these settings to “Not configured”. There is a support post on this topic that is worth reading with additional tips: https://blogs.technet.microsoft.com/intunesupport/2018/04/17/support-tip-ios-11-3-and-native-contacts-app/

Windows Autopilot – check those logs…

Windows Autopilot is a Windows 10 feature that enables organizations to pre-register devices either through an OEM or manually.  When users receive a Windows 10 device that is registered with Autopilot and turn it on, they’ll walk through a streamlined and customized out of box experience (OOBE).  In summary, Autopilot helps to reduce the costs (and in some cases, infrastructure) of deploying devices to users.

If Autopilot were to run into an error there are several methods to check what and why issues occurred. Michael Niehaus has several posts about troubleshooting Autopilot including a recent blog post outlining new methods of accessing information to investigate Autopilot. Refer to Michael’s posts for detailed information on how to troubleshoot Autopilot.

In this post I’m sharing a simple script I wrote (based on the info Michael Niehaus outlined in his post) to view aggregated information about Autopilot from the registry and event viewer. In addition to registry and event viewer info, deeper investigation steps may be pursued with ETW.

 

Let’s get started

Requirements

  • Windows 10, 1709 or later
  • PowerShell


PowerShell Script

Feel free to modify the script to suite your needs such as remotely pull information from devices, etc.

The script is straight forward, first it looks for the Windows 10 version, i.e. 1709, and if it’s greater than or equal to “1709” it runs through both steps and pull registry and event logs. If the installed OS is greater than “1709” it will only pull event logs for 1709 as registry entries didn’t show up until 1803. Lastly, the script only pulls the latest 10 events, however that is easily modified.

 

#Get Windows Version
$WinVersion = (Get-ItemProperty -Path “HKLM:SOFTWAREMicrosoftWindows NTCurrentVersion” -Name ReleaseId).ReleaseId
Write-Host “”
Write-Host WindowsVersion= $WinVersion

if ($WinVersion -ge ‘1709’)

{
Write-Host “”
Write-Host “AutoPilot Registry Entries”
Get-ItemProperty ‘HKLM:SOFTWAREMicrosoftProvisioningDiagnosticsAutoPilot’
}

if ($WinVersion -gt ‘1709’)

{
#Show AutoPilot events
Write-Host “AutoPilot Event Logs”
Write-Host “”
Get-WinEvent -MaxEvents 10 -LogName ‘Microsoft-Windows-Provisioning-Diagnostics-Provider/AutoPilot’
}

 

Let’s see it in action:

Below are the results of a device not deployed with Autopilot.  As we can see there’s not much to look at or troubleshoot…

clip_image002[6]

Let’s take a look at a device deployed with Autopilot (notice the new setup screen that shows up in 1803)

clip_image003

The results of the script shows more information that may be utilized when troubleshooting Autopilot errors:

clip_image004[6]clip_image005

Microsoft Cloud App Security log collector + OMS = Docker container monitoring

Need a quick method to monitor Docker containers? How about monitoring the Docker container that is utilized for automatic log upload for Microsoft Cloud App Security? If so, try out Microsoft OMS Container Monitoring Solution to monitor your docker containers including continuous log collectors using Docker in Microsoft Cloud App Security! 

Did you know that Microsoft Operations Management Suite (OMS) offers many other management and monitoring solutions including update management for Windows, Surface Hub monitoring, Security and Audit information and many more. For more details please visit: https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-add-solutions

If you’re utilizing Microsoft Cloud App Security in your environment today and would like to learn more about automatic log upload for continuous Cloud App Security reports please visit: https://docs.microsoft.com/en-us/cloud-app-security/discovery-docker

 

The following walks through setting up the Container Monitoring Solution in Azure to monitor a Docker container used for Cloud App Security automatic log upload hosted on an Azure VM.

Requirements

Assumptions for this post

 

Let’s get started…

Here’s a look at the Ubuntu VM with Docker used for Cloud App Security automatic log upload:

clip_image002

If you have an Azure subscription log in, select “new” from the upper left, and search for “container monitoring solution”:

clip_image004

Select Container Monitoring Solution and Create to add it to your OMS workspace:

clip_image006

clip_image008

Once the instance of Container Monitoring Solution is added, sign-on to your host where the containers are deployed and follow the instructions to install the OMS agent used for monitoring the host: https://github.com/Microsoft/OMS-docker#supported-linux-operating-systems-and-docker

 

You’ll run a script that is discussed in the link above to install the OMS agent:

clip_image010

 

Once the installation in complete, navigate back to the OMS admin portal and look for a new tile called “Container Monitoring Solution”:

clip_image012

 

Select the tile and view the status of the containers on the host:

clip_image014

clip_image016

clip_image018

 

From the information provided, I can see I have a failure with my Cloud App Security Log Collector (i.e. I named the container “LogCollector”)

clip_image020

When we drill down into the failure I can see that the which container is failing and other details:

clip_image022

 

Monitoring Docker containers using Microsoft OMS as well as the containers used for log collection for Cloud App Security was really simple and I encourage everyone to deploy OMS today.

Add Windows Defender Browser Protection to Chrome with Intune

I recently read a really great post by Martin Bengtsson about utilizing Configuration Manager (SCCM) to force installation of the Windows Defender Browser Protection extension for Chrome. So I decided to take a different approach and deploy the extension utilizing a PowerShell script deployed through Microsoft Intune.

To learn more about the Windows Defender Browser Protection for Google Chrome please visit: https://chrome.google.com/webstore/detail/windows-defender-browser/bkbeeeffjjeopflfhgeknacdieedcoml

Assumptions

Windows 10 device enrolled in Intune


Let’s get started

I created the following PowerShell script to add the Defender Chrome extension as a registry entry:

New-Item -Path HKLM:SoftwarePoliciesGoogleChrome -Name ExtensionInstallForcelist –Force

$RegKey =”HKLM:SoftwarePoliciesGoogleChromeExtensionInstallForcelist”

Set-ItemProperty -path $RegKey -name 1 -value “bkbeeeffjjeopflfhgeknacdieedcoml;https://clients2.google.com/service/update2/crx”

I saved the script as a .ps1 file and added to Intune utilizing the steps below:

clip_image001

Name the script, upload, and save

clip_image002[4]

Assign the script to a group

clip_image003

Sync your Windows 10 device with Intune

clip_image004[4]

Sync the device with Intune 

clip_image005

Registry Before sync

clip_image006[4]

Chrome without Defender browser protection

clip_image007

Registry after sync

clip_image008[4]

Chrome with Defender browser protection

Once Chrome is launched, the extension is automatically downloaded to the extension directory and added to Chrome.

clip_image009

Chrome extension directory

clip_image010[4]

In addition to configuration, Configuration Manager will also perform remediation if this is something you’re more concerned with, SCCM is the best path to go currently. Again read Martin Bengtsson’s detailed post for insight on deploying and remediating for the Windows Defender Browser Protection for Chrome extension through SCCM.

Windows 10 Group Policy vs. Intune MDM Policy who wins?

 

When I speak with organizations about managing Windows 10 devices with Microsoft Intune there is a concern about disruption of current projects to deploy new OSs, patches, etc.  When moving to Intune for managing Windows devices, Intune will leverage the built-in MDM agent vs. having to install another agent to manage Windows 10 devices.

 

With modern management of Windows 10, the process of updating and upgrading Windows 10 devices is seen as continual process.  Updating Windows doesn’t have to be seen a massive project, evaluate your current processes for updating Windows and look at updating Windows 10 as an ongoing predictable process for IT and end users.  In addition your users and company benefit from the latest security features built into Windows 10.

 

Managing Windows policies are also a concern when moving to a newer OS.  Traditionally, configuration policies are managed by Group Policy, however Modern Management of Windows 10 with Microsoft Intune also has a set of policies, even policies that are duplicative of Group Policy (where applicable, not all Group Policies are available via MDM or CSP).  In environments where Group Policies are deployed and managed by Intune there’s the question of which policy wins.  The following describes which policy wins according to Windows 10 version.

 

  • Windows 10 versions 1709 and earlier Group Policy will override MDM policies, even if an identical policy is configured in MDM.

  • Windows 10 version 1803 and beyond there is a new Policy CSP setting called ControlPolicyConflict that includes the policy of MDMWinsOverGP, where the preference of which policy wins can be controlled, i.e. Microsoft Intune MDM policy.

 

For more details about the new ControlPolicyConfict setting please visit: https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-csp-controlpolicyconflict#controlpolicyconflict-mdmwinsovergp

 

What happens to the policy if the device is unenrolled from Intune?  If applicable, Group Policy will re-apply the policies in this scenario.

 

 

Setting up a policy

In the link above, the “scope” of the policy is set for “device” so we’ll need to target the policy at the device scope. 

 

To learn more about user and device scopes please visit: https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-configuration-service-provider#policy-scope 

Since the ControlPolicyConfict policy applies to the device, we’ll have to utilize the following string: ./Device/Vendor/MSFT/Policy/Config/AreaName/PolicyName to configure the policy. 

 

Next replace AreaName/PolicyName with ControlPolicyConflict/MDMWinsOverGP

After the modification to the string, the policy should look like the following: ./Device/Vendor/MSFT/Policy/Config/ControlPolicyConflict/MDMWinsOverGP

 

Creating the policy

 

Let’s create a new policy in Intune to control the GP vs. MDM winner

 

  1. Navigate to portal.azure.com and locate Intune
  2. Select “Device configuration à Profiles à Create profile”
  3. Under Platform select Windows 10 and later
  4. Under Profile type select “custom” and “add”
  5. Name the custom setting with something intuitive
  6. For OMA-URI add the policy OMA-URI string: ./Device/Vendor/MSFT/Policy/Config/ControlPolicyConflict/MDMWinsOverGP
  7. For Data type select Integer and add the number 1

 

Supported values for this policy are as follows:

0 (default)

1 – The MDM policy is used and the GP policy is blocked.

 

 

 

image

 

image

 

 

 

Let’s take a look how the policy is applied

  1. On the Windows 10 device, select the Windows icon > Settings > Accounts > Access work or school à under the account name select Info
  2. Sync with Microsoft Intune by selecting “Sync”
  3. Once the Sync as completed select “Create report”

 

image

 

  • Once the report is completed a folder will open containing an .html file
  • Open the .html report and search for “MDMwins”

 

image

 

GP Setting before the MDM policy takes place :

clip_image007

 

MDM setting after the policy is applied (note: Windows 10 1803 is required to override the GP):

image

 

 

Let’s take a look at a report in Intune regarding the policy and if it was successfully applied.  This useful to make sure the policies are actually applying or not.

 

image

 

 

Logging

Being able to investigate modifications to a device is extremely important, especially when troubleshooting. 

 

In event viewer we can access the event where the policy was applied as shown below.  However digging through events, especially across multiple devices, can be a difficult process.  This is where Microsoft Operations Management Suite (OMS) comes in.

 

 image

 

 

Logging with Microsoft Operations Management Suite (OMS)

Within OMS there is the Log Analytics solution to manage logs from devices with the OMS agent installed.  I won’t go into details about installing the OMS agent, however I will say it’s straight forward.  Once the agent is installed (which I have it installed on all my devices so I can look at label changes with Azure Information Protection (see my previous post) and other aggregated information) we’ll need to grab the proper even log source name and populate that in Log Analytics.

 

 

Find and copy the event log source or name: Microsoft-Windows-DeviceManagement-Enterprise-Diagnostics-Provider

 

image

 

image

 

 

Paste the event log path in Log Analytics to “Windows Event Logs under Settings > Data > Windows Event Logs” as shown below:

 

image

 

 

Give the logs a few minutes to sync from the device to OMS, then run the query below in log analytics analyzer and look for the MDMWinsOverGP policy created above:

 

image

 

For more details about Windows 10 MDM logging please visit: https://docs.microsoft.com/en-us/windows/client-management/mdm/diagnose-mdm-failures-in-windows-10

 

 

Evaluating existing Group Policies to determine migration to MDM

Use the MDM Migration Analysis Tool (MMAT) to evaluate which Group Policies have been set for a target user/computer and cross-reference against its built-in list of supported MDM policies.

 

Download the MDM Migration Analysis Tool (MMAT): https://github.com/WindowsDeviceManagement/MMAT

 

For additional details about creating custom ADMX policies please view the following two great videos:

 

Enable ADMX backed policies in Intune: https://www.microsoft.com/en-us/videoplayer/embed/bdc9b54b-11b0-4bdb-a022-c339d16e7121

 

ADMX backed policy import example: https://www.microsoft.com/en-us/videoplayer/embed/a59888b1-429f-4a49-8570-c39a143d9a73

 

Keep up to date with MDM policies and other features via What’s new in MDM enrollment and management

 

https://docs.microsoft.com/en-us/windows/client-management/mdm/new-in-windows-mdm-enrollment-management

 

That’s it, we’ve learned that there is a new policy added to Windows 10 1803 that will control if MDM policies win over Group Policies (where applicable, not all Group Policies are available via MDM or CSP), how to investigate policies via event viewer, and aggregate those logs using Log Analytics (OMS).

 

 

Windows Information Protection – adding the Intune Company Portal for Windows as an exempt app

As of January 2019 this is no longer necessary as the Intune Company Portal app is now included in the default list of protected apps.



2019-01-03_12-52-07

Organizations using Windows Information Protection (WIP) may experience issues accessing the Intune Company Portal app.  Fortunately, exempting Intune Company Portal app and any other application from a WIP policy is straight forward.

 

To learn more about creating Windows Information Protection policies please visit: https://docs.microsoft.com/en-us/windows/security/information-protection/windows-information-protection/create-wip-policy-using-mam-intune-azure

 

 

Let’s get started

 

By exempting an application the following pertains:

 

If you’re running into compatibility issues where your app is incompatible with WIP, but still needs to be used with enterprise data, you can exempt the app from the WIP restrictions. This means that your apps won’t include auto-encryption or tagging and won’t honor your network restrictions. It also means that your exempted apps might leak.

Source: https://docs.microsoft.com/en-us/windows/security/information-protection/windows-information-protection/create-wip-policy-using-mam-intune-azure#add-apps-to-your-allowed-apps-list

 

Since the Intune Company Portal App doesn’t store any sensitive company data, exempting it shouldn’t be an issue, however always check in with your security team to make sure.

 

The first step to exempting the Intune Company Portal App for Windows is to locate the app in the store.  I’ve done this for you below and even though the app may be accessed from the consumer and business store, all we really care about is the AppID at the end, i.e. “9wzdncrfj3pz”. 

As we can see, the AppID is the same regardless of what portal it was accessed from:

 

Windows Store Intune Company Portal app: https://www.microsoft.com/en-us/store/p/company-portal/9wzdncrfj3pz

Windows Store for Business Intune Company Portal app: https://businessstore.microsoft.com/en-us/store/details/company-portal/9wzdncrfj3pz

 

 

Creating the WIP exemption policy

To create an app policy within Intune to exempt the Intune Company Portal app navigate to portal.azure.com à Intune à Mobile Apps à App protection policies à Add a policy

 

  1. Give the policy a name and select Exempt apps
  2. Select Add apps
  3. From the drop-down menu select Store apps

 

At this point you’ll need to have some information handy about the app.  Fortunately, there is an easy method of extracting this data using the URL below.  I’ve already accessed the URL below; however, you can do this for any store app to find the name, publisher info, and product name.

 

Access following and replace the ID with the ID of the app you’d like to exempt, in this case, the Intune Company Portal app ID: 9wzdncrfj3pz

https://bspmts.mp.microsoft.com/v1/public/catalog/Retail/Products/9wzdncrfj3pz/applockerdata

For more details about accessing app package info please visit: https://docs.microsoft.com/en-us/windows/client-management/mdm/get-product-package 

The following is the output you’ll see in the browser in JSON format:

 

{

  “packageFamilyName”: “Microsoft.CompanyPortal_8wekyb3d8bbwe”,

  “packageIdentityName”: “Microsoft.CompanyPortal”,

  “windowsPhoneLegacyId”: “0b4016fc-d7b2-48a2-97a9-7de3b5ea7424”,

  “publisherCertificateName”: “CN=Microsoft Corporation, O=Microsoft Corporation, L=Redmond, S=Washington, C=US”

}

 

Now that we have the JSON information about the Intune Company Portal store app (using the URL above), we need to add that data to the policy as shown below. 

Once finished adding the information, select OK and assign the policy.  On the Windows device, either wait for your devices to sync with Intune of force a sync from Settings à Accounts à Access work or school.

 

image

 

 

Once the policy updates you’ll be able to access the Intune Company Portal app:

 

image

 

If you’re interested, I go into detail about WIP a previous post: https://blogs.technet.microsoft.com/cbernier/2017/05/19/windows-information-protection-explained-windows-10-creators-update/ 

That’s it, if you’re not utilizing Windows Information Protection today, I highly encourage everyone to look into the benefits of protecting corporate information across personal and corporate owned devices with Intune, including Windows, iOS, and Android.